Our resource hub is home to a wealth of articles, stories and videos about managing and living with type 1 diabetes.
Place your order for our free information packs that support adults and children who have been recently diagnosed.
Our researchers are working on different ways to develop a cure for type 1 diabetes - from growing insulin-producing beta cells in labs to hacking the immune system.
Learn about the technologies that can deliver insulin automatically when needed. And discover the next generation of insulins that are currently being developed.
We have a wide range of fun and festive designs to choose from. Fund life changing research while spreading joy this Christmas!
This Christmas, your gift can bring us closer to a cure for type 1 diabetes – and every pound you give to our Christmas Appeal will be doubled.
The announcement is the biggest treatment breakthrough for type 1 diabetes since the discovery of insulin.
This event is designed for anyone living with type 1 diabetes who would like to learn more about managing their wellbeing across a variety of contexts.
We provide a wealth of information and free resources to help you support and empower your patients or students.
Take our free course for schools to learn more about supporting pupils with type 1 diabetes in educational settings.
Home > News & events > News > JDRF researchers reprogramme donor type 1 pancreas cells to produce insulin
In a world-first, JDRF-funded Australian researchers have successfully turned an insulin gene back on by injecting a drug called GSK126 into pancreatic cells donated from one person with type 1 and two people without.
Insulin is made by beta cells in the pancreas. Our bodies stop being able to make beta cells when we are babies whether we have type 1 diabetes or not. This is because the insulin gene that makes them gets turned off by a molecule called EZH2.
GSK126 is an existing drug that stops EZH2 from working, which enables the genes for producing insulin to start working again – essentially turning them back on. This allows other cells in the pancreas to develop into insulin-producing beta cells. GSK126 is currently licensed by the FDA – the organisation that approves drugs in the US – so we know it is safe for humans.
When type 1 diabetes happens, the immune system attacks the beta cells, which means the body can’t produce its own insulin. The study’s lead researcher, Professor Sam El-Osta, said: “By the time someone is diagnosed with type 1 diabetes, much of their pancreatic beta cells have been totally destroyed by the immune system.” So, manipulating the insulin gene could allow people with type 1 to make their own beta cells again to replace those they have lost.
You may be familiar with our research that aims to produce beta cells from stem cells, which are a type of cell that can transform into many other cell types. Although this research is exciting, we still have a little way to go before it is a viable treatment for people with type 1.
So, how does this new drug compare to these beta cell therapies? Professor El-Osta said: “Our research shows vital insulin production after just two days of drug treatment when compared to three to four months with alternative approaches using stem cells. This non-surgical method has the added benefit that treatments are less vulnerable to the risks associated with transplants.”
It’s important to remember that the study only used cells from three people, so much larger projects are needed to confirm their results. But Professor El-Osta, said: “The discovery of the genetic barrier to insulin which can be unlocked by a drug is an important milestone and a step in the right direction for the path to accelerate cures.”
The research, which was co-funded by JDRF, reveals that drugs that target the immune system offer very effective and rapid improvements in stabilising blood sugar levels, often within just three months.
The new JDRF-funded clinical trial called SOPHIST will test a drug to help people with type 1 diabetes and heart failure.
Thanks to JDRF supporters, we’ve been able to award a £1.3 million grant to King’s College London (KCL) and Steno Diabetes Center Copenhagen to examine how existing drugs, known as SGLT inhibitors, could delay the progression of kidney disease in people living with type 1 diabetes.
Don’t miss out on the latest research, inspiring stories, tech news, upcoming events, and handy information on living well with type 1. Join us now and receive it all straight to your inbox.
It’s thanks to your dedication that we have funded great progress in type 1 cure, treatment and prevention research. Help us to continue our vital research.